Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0297980, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38329992

RESUMO

The ectoparasitic mite, Varroa destructor is the most serious widespread pest of managed honeybees (Apis mellifera). Several acaricide products, which include essential oils, have been proposed for mite control. In this study, we aimed to apply atmospheric-pressure plasma to modify a cardboard piece surface in order to prolong the delivery of essential oils for controlling Varroa in honeybee colonies. Absorption capacity, release rates and evaporation rates of essential oils were determined. Cardboard piece showed a higher absorption capacity of cinnamon compared to citronella and clove. Surface modification of cardboard pieces using argon plasma at different gas flow rates and treatment durations, significantly affected the absorption of clove oil. Additionally, the release rate of cinnamon, citronella and clove was significantly enhanced after argon plasma treatments. Evaporation of cinnamon was dramatically increased by plasma treatment at 6-h of incubation. The highest evaporation rate was obtained by plasma-treated cardboard piece at a gas flow rate of 0.5 Lpm for 60 s (0.2175 ± 0.0148 µl/g•h). Efficiency of plasma-treated cardboard piece, impregnated with essential oils, was also investigated for Varroa control in honeybee colonies. In the first experiment, formic acid 65% (v/v) showed the highest efficiency of 90.60% and 81.59% with the percent of mite infestation was 0.23 ± 0.13% and 0.47 ± 0.19% at 21 and 35 days, respectively after treatment. The efficacy of cardamon oil (5% (v/v)) delivered using plasma-treated cardboard pieces was 57.71% (0.70 ± 0.16% of mite infestation) at day 21 of experiment. However, the delivery of cardamon oil at the concentration of 1% and 5% (v/v) by untreated cardboard piece had 16.93% and 24.05% of efficacy to control mites. In the 2nd experiment, the application of plasma-treated cardboard pieces impregnated with 5% (v/v) clove oil induced a 38.10% reduction in the population of Varroa mites followed by 5% (v/v) of cardamon with 30% efficiency. Although, the infestation rate of Varroa in colonies was not significant different between treatments, essential oils delivered using plasma-treated cardboard pieces tended to decrease Varroa population in the treated colonies. Hence, atmospheric-pressure plasma for the modification of other materials, should be further investigated to provide alternative control treatment applications against honeybee mites.


Assuntos
Acaricidas , Lamiaceae , Óleos Voláteis , Gases em Plasma , Escabiose , Varroidae , Abelhas , Animais , Acaricidas/farmacologia , Óleos Voláteis/farmacologia , Óleo de Cravo , Gases em Plasma/farmacologia
2.
Sci Rep ; 14(1): 1831, 2024 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-38246935

RESUMO

Ascosphaera apis is a worldwide pathogenic fungi of honeybees that can cause a decline in bee populations. In this study, we investigated the antifungal activity of non-thermal plasma on fungal growth. Spore inactivation after exposure to gas plasma by liquid phase and plasma activated water (PAW) and pathogenicity of A. apis in vivo were also examined. The results demonstrated that the mycelial growth of fungi was completely inhibited after argon plasma treatment. Both gas plasma and PAW exposures resulted in a significant decrease of A. apis spore numbers, maximum reduction of 1.71 and 3.18-fold, respectively. Germinated fungal spores on potato dextrose agar were also reduced after plasma treatment. SEM analysis revealed a disruption in the morphological structure of the fungal spores. The pathogenicity of A. apis on honeybee larvae was decreased after spores treated by gas plasma and PAW with a disease inhibition of 63.61 ± 7.28% and 58.27 ± 5.87%, respectively after 7 days of cultivation. Chalkbrood in honey bees have limited control options and our findings are encouraging. Here, we demonstrate a possible alternative control method using non-thermal plasma for chalkbrood disease in honeybees.


Assuntos
Onygenales , Abelhas , Animais , Larva , Antifúngicos , Argônio , Esporos Fúngicos , Água
3.
Life (Basel) ; 13(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36836795

RESUMO

Widespread parasites, along with emerging threats, globalization, and climate change, have greatly affected honey bees' health, leading to colony losses worldwide. In this study, we investigated the detection of biotic stressors (i.e., viruses, microsporidian, bacteria, and fungi) in Apis cerana by surveying the colonies across different regions of Thailand (Chiang Mai in the north, Nong Khai and Khon Kaen in the northeast, and Chumphon and Surat Thani in the south, in addition to the Samui and Pha-ngan islands). In this study, we detected ABPV, BQCV, LSV, and Nosema ceranae in A. cerana samples through RT-PCR. ABPV was only detected from the samples of Chiang Mai, whereas we found BQCV only in those from Chumphon. LSV was detected only in the samples from the Samui and Pha-ngan islands, where historically no managed bees are known. Nosema ceranae was found in all of the regions except for Nong Khai and Khon Kaen in northeastern Thailand. Paenibacillus larvae and Ascosphaera apis were not detected in any of the A. cerana samples in this survey. The phylogenetic tree analysis of the pathogens provided insights into the pathogens' movements and their distribution ranges across different landscapes, indicating the flow of pathogens among the honey bees. Here, we describe the presence of emerging pathogens in the Asian honey bee as a valuable step in our understanding of these pathogens in terms of the decline in eastern honey bee populations.

4.
J Invertebr Pathol ; 186: 107688, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34728218

RESUMO

Nosema disease is one factor that can cause colony decline in honeybees (Apis mellifera L.) worldwide. Nosema ceranae has outcompeted Nosema apis in the Western honeybee (A. mellifera) which is its original host. Fumagilin is an effective antibiotic treatment to control Nosema infection but currently it is forbidden in many countries. In this study, 12 plant extracts were evaluated for their toxicity to adult bees and antimicrosporidian activity under laboratory and field conditions. N. ceranae-infected adult bees were fed ad libitum with 50% sucrose solution containing 1% and 5% (w/v) of each plant extract. Bee mortality in N. ceranae-infected groups fed with plant extracts was higher than that in the control group treated with fumagilin. The results demonstrated that 9 of 12 extracts had high antimicrosporidian activity against N. ceranae and their efficacies were comparable to fumagilin. Spore reduction in infected bees was 4-6 fold less after extract treatment. Following laboratory screening, Annona squamosa, Ocimum basilicum, Psidium guajava and Syzygium jambos were tested in honeybee colonies. Plant extracts of 2% concentration (w/v) inhibited the development of Nosema spores after 30 days of treatment. At the end of experiment (90 days), spores in the plant extract treated groups were lower than in group treated with fumagilin but there was no significant difference. Although, extracts tested in this study showed high toxicity to bee in laboratory cages, they did not show negative affects on bees under whole colony conditions. Therefore, the effectiveness of plant extracts tested in this study was notable and warrants further study as potential Nosema control agents in honey bees. Plant extracts would offer a non-antibiotic alternative for Nosema control and help reduce the overuse of antibiotics in livestock.


Assuntos
Abelhas/microbiologia , Fungicidas Industriais/farmacologia , Nosema/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Fungicidas Industriais/química , Nosema/fisiologia , Extratos Vegetais/química
5.
Commun Biol ; 4(1): 48, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420325

RESUMO

Queens of many social hymenoptera keep sperm alive within their specialized storage organ, the spermatheca, for years, defying the typical trade-off between lifespan and reproduction. However, whether honey bee (Apis mellifera) queens experience a trade-off between reproduction and immunity is unknown, and the biochemical processes underlying sperm viability are poorly understood. Here, we survey quality metrics and viral loads of honey bee queens from nine genetic sources. Queens rated as 'failed' by beekeepers had lower sperm viability, fewer sperm, and higher levels of sacbrood virus and black queen cell virus. Quantitative proteomics on N = 123 spermathecal fluid samples shows, after accounting for sperm count, health status, and apiary effects, five spermathecal fluid proteins significantly correlating with sperm viability: odorant binding protein (OBP)14, lysozyme, serpin 88Ea, artichoke, and heat-shock protein (HSP)10. The significant negative correlation of lysozyme-a conserved immune effector-with sperm viability is consistent with a reproduction vs. immunity trade-off in honey bee queens.


Assuntos
Abelhas/imunologia , Proteoma , Reprodução , Espermatozoides , Animais , Abelhas/metabolismo , Abelhas/virologia , Sobrevivência Celular , Feminino , Proteínas de Insetos/metabolismo , Masculino , Serpinas/metabolismo
6.
BMC Genomics ; 21(1): 571, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819278

RESUMO

BACKGROUND: Queen failure is a persistent problem in beekeeping operations, but in the absence of overt symptoms it is often difficult, if not impossible, to ascertain the root cause. Stressors like heat-shock, cold-shock, and sublethal pesticide exposure can reduce stored sperm viability and lead to cryptic queen failure. Previously, we suggested candidate protein markers indicating heat-shock in queens. Here, we further investigate these heat-shock markers and test new stressors to identify additional candidate protein markers. RESULTS: We found that heat-shocking queens for upwards of 1 h at 40 °C was necessary to induce significant changes in the two strongest candidate heat-shock markers, and that relative humidity significantly influenced the degree of activation. In blind heat-shock experiments, we tested the efficiency of these markers at assigning queens to their respective treatment groups and found that one marker was sufficient to correctly assign queens 75% of the time. Finally, we compared cold-shocked queens at 4 °C and pesticide-exposed queens to controls to identify candidate markers for these additional stressors, and compared relative abundances of all markers to queens designated as 'healthy' and 'failing' by beekeepers. Queens that failed in the field had higher expression of both heat-shock and pesticide protein markers, but not cold-shock markers. CONCLUSIONS: This work offers some of the first steps towards developing molecular diagnostic tools to aid in determining cryptic causes of queen failure. Further work will be necessary to determine how long after the stress event a marker's expression remains elevated, and how accurate these markers will be for field diagnoses.


Assuntos
Praguicidas , Abelhas , Biomarcadores
7.
Insects ; 11(7)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668740

RESUMO

In this study, we examined the impact of Sacbrood virus (SBV), the cause of larval honeybee (Apis mellifera) death, producing a liquefied a larva sac, on the gut bacterial communities on two larval honeybee species, Apis mellifera and Apis cerana. SBV was added into a worker jelly food mixture and bee larvae were grafted into each of the treatment groups for 24 h before DNA/RNA extraction. Confirmation of SBV infection was achieved using quantitative reverse transcription polymerase chain reaction (RT-qPCR) and visual symptomology. The 16S rDNA was sequenced by Illumina sequencing. The results showed the larvae were infected with SBV. The gut communities of infected A. cerana larvae exhibited a dramatic change compared with A. mellifera. In A. mellifera larvae, the Illumina sequencing revealed the proportion of Gilliamella, Snodgrassella and Fructobacillus was not significantly different, whereas in A. cerana, Gilliamella was significantly decreased (from 35.54% to 2.96%), however, with significant increase in Snodgrassella and Fructobacillus. The possibility of cross-infection should be further investigated.

9.
PLoS Biol ; 17(5): e3000256, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31059510

RESUMO

Honey bees are experts at refuting societal norms. Their matriarchal hives are headed by queens, backed by an all-female workforce, and males die soon after copulation. But the biochemical basis of how these distinct castes and sexes (queens, workers, and drones) arise is poorly understood, partly due to a lack of efficient tools for genetic manipulation. Now, Roth and colleagues have used clustered regularly interspaced short palindromic repeats (CRISPR) to knock out two key genes (feminizer and doublesex) that guide sexual development. Their technique yielded remarkably low rates of genetic mosaicism and offers a promising tool for engineering and phenotyping bees for diverse applications.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Comportamento Sexual Animal , Animais , Abelhas , Feminino , Técnicas de Inativação de Genes , Masculino , Fenótipo
10.
Appl Environ Microbiol ; 85(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31003985

RESUMO

Paenibacillus larvae, the causative agent of American foulbrood (AFB), is the primary bacterial pathogen affecting honeybees and beekeeping. The main methods for controlling AFB are incineration of diseased colonies or prophylactic antibiotic treatment (e.g., with tylosin), neither of which is fully satisfactory. The search for superior means for controlling AFB has led to an increased interest in the natural relationships between the honeybee-pathogenic and mutualistic microorganisms and, in particular, the antagonistic effects of honeybee-specific lactic acid bacteria (hbs-LAB) against P. larvae These effects have been demonstrated only on individual larvae in controlled laboratory bioassays. Here we investigated whether supplemental administration of hbs-LAB had a similar beneficial effect on P. larvae infection at colony level. We compared experimentally AFB-infected colonies treated with hbs-LAB supplements to untreated and tylosin-treated colonies and recorded AFB symptoms, bacterial spore levels, and two measures of colony health. To account for the complexity of a bee colony, we focused on (Bayesian) probabilities and magnitudes of effect sizes. Tylosin reduced AFB disease symptoms but also had a negative effect on colony strength. The tylosin treatment did not, however, affect P. larvae spore levels and might therefore "mask" the potential for disease. hbs-LAB tended to reduce brood size in the short term but was unlikely to affect AFB symptoms or spores. These results do not contradict demonstrated antagonistic effects of hbs-LAB against P. larvae at the individual bee level but rather suggest that supplementary administration of hbs-LAB may not be the most effective way to harness these beneficial effects at the colony level.IMPORTANCE The previously demonstrated antagonistic effects of honeybee-derived bacterial microbiota on the infectivity and pathogenicity of P. larvae in laboratory bioassays have identified a possible new approach to AFB control. However, honeybee colonies are complex superorganisms where social immune defenses play a major role in resistance against disease at the colony level. Few studies have investigated the effect of beneficial microorganisms on bee diseases at the colony level. Effects observed at the individual bee level do not necessarily translate into similar effects at the colony level. This study partially fills this gap by showing that, unlike at the individual level, hbs-LAB supplements did not affect AFB symptoms at the colony level. The inference is that the mechanisms regulating the honeybee microbial dynamics within a colony are too strong to manipulate positively through supplemental feeding of live hbs-LAB and that new potential remedies identified through laboratory research have to be tested thoroughly in situ, in colonies.


Assuntos
Antibiose , Abelhas/microbiologia , Lactobacillales/fisiologia , Paenibacillus larvae/fisiologia , Animais , Antibacterianos/farmacologia , Abelhas/efeitos dos fármacos , Abelhas/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/microbiologia , Paenibacillus larvae/efeitos dos fármacos , Especificidade da Espécie , Tilosina/farmacologia
11.
J Econ Entomol ; 112(3): 1043-1049, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30753530

RESUMO

Honey bee (Apis mellifera) (Linnaeus) (Hymenoptera: Apidae) queens, the reproductive female caste, are crucial for colony success, and many management problems that beekeepers face are related to their diminished reproductive quality and premature failure. Previous research has suggested that temperature extremes may affect the viability of stored sperm in queens' spermathecae, thus the abiotic conditions of queens during transport may be germane to these problems. We recorded the temperatures experienced by queens during 2 yr of package transportation and tracked the newly installed colonies through establishment and buildup. During this critical 6-8 wk period, we observed typically high rates of queen failure (~25%) but found no indication that these postinstallation queen events were driven by temperature-related damage to stored sperm (an essential component of queen quality) incurred during transportation. We also found no indication of significant hot or cold zones across the truckloads of packages that would suggest a problem in how packages are insulated during transportation. However, we did observe significantly higher temperatures (31.2 vs. 29.9°C) and lower temperature variance (8.8 vs. 12.2) in queens that ultimately failed during the observation period, indicating that workers may respond differently to these queens in a way that manifests as more insulating clusters around queen cages. If so, then the collective process by which workers accept or reject a foreign queen may already be detectable even if it does not ultimately conclude until some weeks later. Nevertheless, it remains unclear why large numbers of otherwise high-quality queens are failing in newly installed packages.


Assuntos
Himenópteros , Animais , Abelhas , Feminino , Masculino , Reprodução , Espermatozoides , Temperatura , Meios de Transporte
12.
PLoS One ; 12(11): e0188063, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29125881

RESUMO

At least two parasitic mites have moved from Asian species of honeybees to infest Apis mellifera. Of these two, Varroa destructor is more widespread globally while Tropilaelaps mercedesae has remained largely in Asia. Tropilaelaps mites are most problematic when A. mellifera is managed outside its native range in contact with Asian species of Apis. In areas where this occurs, beekeepers of A. mellifera treat aggressively for Tropilaelaps and Varroa is either outcompeted or is controlled as a result of the aggressive treatment regime used against Tropilaelaps. Many mite control products used worldwide may in fact control both mites but environmental conditions differ globally and thus a control product that works well in one area may be less or ineffective in other areas. This is especially true of volatile compounds. In the current research we tested several commercial products known to control Varroa and powdered sulfur for efficacy against Tropilaelaps. Additionally, we tested the cultural control method of making a hive division to reduce Tropilaelaps growth in both the parent and offspring colony. Making a split or nucleus colony significantly reduced mite population in both the parent and nucleus colony when compared to un-manipulated control colonies. The formic acid product, Mite-Away Quick Strips®, was the only commercial product that significantly reduced mite population 8 weeks after initiation of treatment without side effects. Sulfur also reduced mite populations but both sulfur and Hopguard® significantly impacted colony growth by reducing adult bee populations. Apivar® (amitraz) strips had no effect on mite or adult bee populations under the conditions tested.


Assuntos
Abelhas/parasitologia , Ácaros/fisiologia , Animais , Tailândia , Controle de Ácaros e Carrapatos
13.
PLoS One ; 12(7): e0181297, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686738

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0118748.].

14.
PLoS One ; 12(5): e0176831, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28467471

RESUMO

Paenibacillus larvae is a Gram positive bacterium and the causative agent of the most widespread fatal brood disease of honey bees, American foulbrood (AFB). A total of thirty-three independent Paenibacillus larvae isolates from various geographical origins in North America and five reference strains were investigated for genetic diversity using multilocus sequence typing (MLST). This technique is regarded to be a powerful tool for epidemiological studies of pathogenic bacteria and is widely used in genotyping assays. For MLST, seven housekeeping gene loci, ilvD (dihydroxy-acid dyhydrogenase), tri (triosephosphate isomerase), purH (phospharibosyl-aminoimidazolecarboxamide), recF (DNA replication and repair protein), pyrE (orotate phosphoribosyltransferase), sucC (succinyl coenzyme A synthetase ß subunit) and glpF (glycerol uptake facilitator protein) were studied and applied for primer designs. Previously, ERIC type DNA fingerprinting was applied to these same isolates and the data showed that almost all represented the ERIC I type, whereas using BOX-PCR gave an indication of more diversity. All isolates were screened for resistance to four antibiotics used by U.S. beekeepers, showing extensive resistance to tetracycline and the first records of resistance to tylosin and lincomycin. Our data highlight the intraspecies relationships of P. larvae and the potential application of MLST methods in enhancing our understanding of epidemiological relationships among bacterial isolates of different origins.


Assuntos
Paenibacillus larvae/genética , Animais , Antibacterianos/farmacologia , Abelhas/microbiologia , Resistência Microbiana a Medicamentos/genética , Genes de Insetos/genética , Variação Genética/genética , Lincomicina/farmacologia , Tipagem de Sequências Multilocus , América do Norte , Paenibacillus larvae/efeitos dos fármacos , Tilosina/farmacologia
15.
Sci Rep ; 6: 33207, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27628343

RESUMO

This study measured part of the in-hive pesticide exposome by analyzing residues from live in-hive bees, stored pollen, and wax in migratory colonies over time and compared exposure to colony health. We summarized the pesticide burden using three different additive methods: (1) the hazard quotient (HQ), an estimate of pesticide exposure risk, (2) the total number of pesticide residues, and (3) the number of relevant residues. Despite being simplistic, these models attempt to summarize potential risk from multiple contaminations in real-world contexts. Colonies performing pollination services were subject to increased pesticide exposure compared to honey-production and holding yards. We found clear links between an increase in the total number of products in wax and colony mortality. In particular, we found that fungicides with particular modes of action increased disproportionally in wax within colonies that died. The occurrence of queen events, a significant risk factor for colony health and productivity, was positively associated with all three proxies of pesticide exposure. While our exposome summation models do not fully capture the complexities of pesticide exposure, they nonetheless help elucidate their risks to colony health. Implementing and improving such models can help identify potential pesticide risks, permitting preventative actions to improve pollinator health.


Assuntos
Migração Animal/efeitos dos fármacos , Abelhas/efeitos dos fármacos , Contaminação de Medicamentos , Resíduos de Praguicidas/toxicidade , Praguicidas/toxicidade , Animais , Abelhas/fisiologia , Praguicidas/análise , Medição de Risco , Estados Unidos
17.
Proc Biol Sci ; 283(1828)2016 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-27075256

RESUMO

At present, there is substantive evidence that the nutritional content of agriculturally important food crops will decrease in response to rising levels of atmospheric carbon dioxide, Ca However, whether Ca-induced declines in nutritional quality are also occurring for pollinator food sources is unknown. Flowering late in the season, goldenrod (Solidago spp.) pollen is a widely available autumnal food source commonly acknowledged by apiarists to be essential to native bee (e.g. Bombus spp.) and honeybee (Apis mellifera) health and winter survival. Using floral collections obtained from the Smithsonian Natural History Museum, we quantified Ca-induced temporal changes in pollen protein concentration of Canada goldenrod (Solidago canadensis), the most wide spread Solidago taxon, from hundreds of samples collected throughout the USA and southern Canada over the period 1842-2014 (i.e. a Ca from approx. 280 to 398 ppm). In addition, we conducted a 2 year in situtrial of S. Canadensis populations grown along a continuous Ca gradient from approximately 280 to 500 ppm. The historical data indicated a strong significant correlation between recent increases in Ca and reductions in pollen protein concentration (r(2)= 0.81). Experimental data confirmed this decrease in pollen protein concentration, and indicated that it would be ongoing as Ca continues to rise in the near term, i.e. to 500 ppm (r(2)= 0.88). While additional data are needed to quantify the subsequent effects of reduced protein concentration for Canada goldenrod on bee health and population stability, these results are the first to indicate that increasing Ca can reduce protein content of a floral pollen source widely used by North American bees.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Abelhas/fisiologia , Dióxido de Carbono/análise , Solidago/fisiologia , Animais , Mudança Climática , Flores/fisiologia , Indiana , Maryland , Pólen/química , Polinização
18.
J Insect Physiol ; 89: 1-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26979384

RESUMO

Honey bee population declines are of global concern. Numerous factors appear to cause these declines including parasites, pathogens, malnutrition and pesticides. Residues of the organophosphate acaricide coumaphos and the neonicotinoid insecticide imidacloprid, widely used to combat Varroa mites and for crop protection in agriculture, respectively, have been detected in wax, pollen and comb samples. Here, we assess the effects of these compounds at different doses on the viability of sperm stored in the honey bee queens' spermatheca. Our results demonstrate that sub-lethal doses of imidacloprid (0.02ppm) decreased sperm viability by 50%, 7days after treatment. Sperm viability was a downward trend (about 33%) in queens treated with high doses of coumaphos (100ppm), but there was not significant difference. The expression of genes that are involved in development, immune responses and detoxification in honey bee queens and workers exposed to chemicals was measured by qPCR analysis. The data showed that expression levels of specific genes were triggered 1day after treatment. The expression levels of P450 subfamily genes, CYP306A1, CYP4G11 and CYP6AS14 were decreased in honey bee queens treated with low doses of coumaphos (5ppm) and imidacloprid (0.02ppm). Moreover, these two compounds suppressed the expression of genes related to antioxidation, immunity and development in queens at day 1. Up-regulation of antioxidants by these compounds in worker bees was observed at day 1. Coumaphos also caused a repression of CYP306A1 and CYP4G11 in workers. Antioxidants appear to prevent chemical damage to honey bees. We also found that DWV replication increased in workers treated with imidacloprid. This research clearly demonstrates that chemical exposure can affect sperm viability in queen honey bees.


Assuntos
Acaricidas/toxicidade , Abelhas/fisiologia , Cumafos/toxicidade , Regulação da Expressão Gênica , Imidazóis/toxicidade , Inseticidas/toxicidade , Nitrocompostos/toxicidade , Espermatozoides/fisiologia , Animais , Abelhas/genética , Sobrevivência Celular , Regulação para Baixo , Feminino , Masculino , Neonicotinoides , Distribuição Aleatória , Regulação para Cima
19.
PLoS One ; 11(2): e0147220, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26863438

RESUMO

Queen health is closely linked to colony performance in honey bees as a single queen is normally responsible for all egg laying and brood production within the colony. In the U. S. in recent years, queens have been failing at a high rate; with 50% or greater of queens replaced in colonies within 6 months when historically a queen might live one to two years. This high rate of queen failure coincides with the high mortality rates of colonies in the US, some years with >50% of colonies dying. In the current study, surveys of sperm viability in US queens were made to determine if sperm viability plays a role in queen or colony failure. Wide variation was observed in sperm viability from four sets of queens removed from colonies that beekeepers rated as in good health (n = 12; average viability = 92%), were replacing as part of normal management (n = 28; 57%), or where rated as failing (n = 18 and 19; 54% and 55%). Two additional paired set of queens showed a statistically significant difference in viability between colonies rated by the beekeeper as failing or in good health from the same apiaries. Queens removed from colonies rated in good health averaged high viability (ca. 85%) while those rated as failing or in poor health had significantly lower viability (ca. 50%). Thus low sperm viability was indicative of, or linked to, colony performance. To explore the source of low sperm viability, six commercial queen breeders were surveyed and wide variation in viability (range 60-90%) was documented between breeders. This variability could originate from the drones the queens mate with or temperature extremes that queens are exposed to during shipment. The role of shipping temperature as a possible explanation for low sperm viability was explored. We documented that during shipment queens are exposed to temperature spikes (<8 and > 40°C) and these spikes can kill 50% or more of the sperm stored in queen spermathecae in live queens. Clearly low sperm viability is linked to colony performance and laboratory and field data provide evidence that temperature extremes are a potential causative factor.


Assuntos
Criação de Abelhas/métodos , Abelhas/fisiologia , Colapso da Colônia , Infertilidade Masculina/veterinária , Espermatozoides/fisiologia , Animais , Abelhas/microbiologia , Abelhas/virologia , Causalidade , Sobrevivência Celular , Dicistroviridae/isolamento & purificação , Feminino , Temperatura Alta/efeitos adversos , Masculino , Nosema/isolamento & purificação , Picornaviridae/isolamento & purificação , Meios de Transporte , Estados Unidos
20.
PLoS One ; 10(12): e0145365, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26700168

RESUMO

Identifying plant taxa that honey bees (Apis mellifera) forage upon is of great apicultural interest, but traditional methods are labor intensive and may lack resolution. Here we evaluate a high-throughput genetic barcoding approach to characterize trap-collected pollen from multiple North Dakota apiaries across multiple years. We used the Illumina MiSeq platform to generate sequence scaffolds from non-overlapping 300-bp paired-end sequencing reads of the ribosomal internal transcribed spacers (ITS). Full-length sequence scaffolds represented ~530 bp of ITS sequence after adapter trimming, drawn from the 5' of ITS1 and the 3' of ITS2, while skipping the uninformative 5.8S region. Operational taxonomic units (OTUs) were picked from scaffolds clustered at 97% identity, searched by BLAST against the nt database, and given taxonomic assignments using the paired-read lowest common ancestor approach. Taxonomic assignments and quantitative patterns were consistent with known plant distributions, phenology, and observational reports of pollen foraging, but revealed an unexpected contribution from non-crop graminoids and wetland plants. The mean number of plant species assignments per sample was 23.0 (+/- 5.5) and the mean species diversity (effective number of equally abundant species) was 3.3 (+/- 1.2). Bray-Curtis similarities showed good agreement among samples from the same apiary and sampling date. Rarefaction plots indicated that fewer than 50,000 reads are typically needed to characterize pollen samples of this complexity. Our results show that a pre-compiled, curated reference database is not essential for genus-level assignments, but species-level assignments are hindered by database gaps, reference length variation, and probable errors in the taxonomic assignment, requiring post-hoc evaluation. Although the effective per-sample yield achieved using custom MiSeq amplicon primers was less than the machine maximum, primarily due to lower "read2" quality, further protocol optimization and/or a modest reduction in multiplex scale should offset this difficulty. As small quantities of pollen are sufficient for amplification, our approach might be extendable to other questions or species for which large pollen samples are not available.


Assuntos
Abelhas/fisiologia , Filogenia , Plantas/classificação , Pólen/classificação , Animais , DNA de Plantas/química , Geografia , Pólen/genética , Polinização , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...